ini	100		dli		\mathbf{c}	Η.		
		U	u	u	•		U	

GQG & composite gates

summary

安定な複合量子操作と 幾何学的および動的位相

坂東将光、近藤康^A

近畿大学大学院総合理工学研究科、近畿大学理工学部 А

2010年9月23日

日本物理学会 2010 年秋季大会@大阪府立大学

introduction	GQG & composite gates	dynamic phase & robustness	example 000	summary
Introduct	ion			

幾何学的量子ゲート:動的位相が0

幾何学的量子ゲートはエラーに対して堅牢である と言われている。

2010-09-23 M. Bando & Y. Kondo (Kinki Univ.) 安定な複合量子操作と幾何学的および動的位相 (23aRF-3)

introduction	GQG & composite gates	dynamic phase & robustness	example 000	summary
Introducti	on			

幾何学的量子ゲート:動的位相が0

幾何学的量子ゲートはエラーに対して堅牢である と言われている。

introduction	GQG & composite gates	dynamic phase & robustness	example	summary
	00000	000	000	

Introduction

動的位相が0になる複合量子ゲートは、 制御変数の強さの系統的なエラーに対して安定。

- これまで NMR で用いられてきた複合パルスの多くは、
 実は動的位相が0 になるように構成されていた。
- NMRの複合パルスのアイデアを応用して、系統的なエ ラーに対して安定な複合量子ゲートを構成できる。

introduction	GQG & composite gates	dynamic phase & robustness	example	summary
1 . 1			000	

Introduction

動的位相が0になる複合量子ゲートは、 制御変数の強さの系統的なエラーに対して安定。

これまでNMRで用いられてきた複合パルスの多くは、
 実は動的位相が0になるように構成されていた。

■ NMRの複合パルスのアイデアを応用して、系統的なエ ラーに対して安定な複合量子ゲートを構成できる。

introduction	GQG & composite gates	dynamic phase & robustness	example	summary
1 . 1			000	

Introduction

動的位相が0になる複合量子ゲートは、 制御変数の強さの系統的なエラーに対して安定。

- これまで NMR で用いられてきた複合パルスの多くは、
 実は動的位相が0 になるように構成されていた。
- NMRの複合パルスのアイデアを応用して、系統的なエ ラーに対して安定な複合量子ゲートを構成できる。

introduction

GQG & composite gates

dynamic phase & robustness

example

summary

動的位相と幾何学的位相

位相

$$|\boldsymbol{n}(1)\rangle = \underline{e^{i\gamma}} |\boldsymbol{n}(0)\rangle \quad , \quad \gamma = \gamma_{\rm d} + \gamma_{\rm g}$$

 $\gamma_{
m d}$: 動的位相 , $\gamma_{
m g}$: 幾何学的位相

2010-09-23

M. Bando & Y. Kondo (Kinki Univ.)

 θ : 制御変数の強さ , m: 単位ベクトル ($m \in \mathbb{R}^3$) $\boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$

introduction	GQG & composite gates ○○●○○	dynamic phase & robustness	example 000	summary
複合量子	ゲート			
1量子ビ	ットゲート			
	$ m{n}_0 angle$ ———	R R R $ n_0\rangle$		
	$R = R(\boldsymbol{m}, \theta)$	$(-i\theta \frac{\boldsymbol{m}\cdot\boldsymbol{\sigma}}{2})$		
複合量子	- ゲート			
$ n_0 angle$ —	R_1 R_2 R_3	$-\cdots - R_N - R_I$	$_{\scriptscriptstyle N}\cdots R_2R_1\left \mathbf{r} \right $	$ \iota_0 angle$
R	$_{j} = R(m_{j}, \theta_{j}) = \exp(m_{j}, \theta_{j})$	$\left(-i\theta_j \frac{\boldsymbol{m}_j \cdot \boldsymbol{\sigma}}{2}\right) , \prod_{j=1}^N$	$R_j = R$	
θ	:制御変数の強さ , $\sigma=$	m : 単位ベクトル (m $(\sigma_x, \sigma_y, \sigma_z)$	$\iota \in \mathbb{R}^3$)	

2010-09-23

M. Bando & Y. Kondo (Kinki Univ.)

introduction	GQG & composite gates ○○●○○	dynamic phase & robustness	example summary
複合量子	ゲート		
1量子と	ニットゲート		
	$ m{n}_0 angle$ ———	R R R $ n_0 angle$	
	$R = R(\boldsymbol{m}, \boldsymbol{ heta})$	$(-i\theta \frac{\boldsymbol{m}\cdot\boldsymbol{\sigma}}{2})$	
複合量子	子ゲート		
$\ket{m{n}_0}$ –	R_1 R_2 R_3	$-\cdots - R_N - R_N$	$_{N}\cdots R_{2}R_{1}\left oldsymbol{n}_{0} ight angle$
R	$r_j = R(\boldsymbol{m}_j, \theta_j) = \exp($	$\left(-i\theta_j \frac{\boldsymbol{m}_j \cdot \boldsymbol{\sigma}}{2}\right) , \prod_{j=1}^N$	$R_j = R$

heta: 制御変数の強さ , m: 単位ベクトル $(m \in \mathbb{R}^3)$ $\sigma = (\sigma_x, \sigma_y, \sigma_z)$

introduction	GQG & composite gates ○○○●○	dynamic phase & robustness	example	summary
複合量	子ゲート			

1量子ビットゲート ハミルトニアン

$$R(\boldsymbol{m}, \theta) = \exp\left(-i\theta \frac{\boldsymbol{m} \cdot \boldsymbol{\sigma}}{2}\right) \iff H(\boldsymbol{m}, \theta) = \theta \frac{\boldsymbol{m} \cdot \boldsymbol{\sigma}}{2} \frac{1}{T}$$

動的位相

$$\gamma_{\rm d} = -\int_0^T \langle \boldsymbol{n} | H(\boldsymbol{m}, \theta) | \boldsymbol{n} \rangle \, dt = -\frac{\theta}{2} \boldsymbol{m} \cdot \boldsymbol{n}$$

n: Bloch ベクトル , |n
angle: 状態ベクトル $n=\langle n|\,\sigma\,|n
angle$

2010-09-23

M. Bando & Y. Kondo (Kinki Univ.)

introduction	GQG & composite gates ○○○●○	dynamic phase & robustness	example 000	summary
複合量子	- - ビゲート			

$$1 \equiv f \forall y \restriction f = h$$

$$R(\boldsymbol{m}, \theta) = \exp\left(-i\theta \frac{\boldsymbol{m} \cdot \boldsymbol{\sigma}}{2}\right) \quad \iff \quad H(\boldsymbol{m}, \theta) = \theta \frac{\boldsymbol{m} \cdot \boldsymbol{\sigma}}{2} \frac{1}{T}$$

動的位相

$$\underline{\gamma_{\mathrm{d}} = -\int_{0}^{T} \langle \boldsymbol{n} | H(\boldsymbol{m}, \theta) | \boldsymbol{n} \rangle \, dt = -\frac{\theta}{2} \boldsymbol{m} \cdot \boldsymbol{n}}$$

n: Bloch ベクトル , |n
angle: 状態ベクトル

$$m{n}=\langlem{n}\,|\,m{\sigma}\,|m{n}
angle$$

2010-09-23

introduction	GQG & composite gates ○○○○●	dynamic phase & robustness	example	summary
Cvclic S	tates			

$$\succ$$
 suppose $|\mathbf{n}_{\pm}(0)
angle, |\mathbf{n}_{-}(0)
angle, \langle \mathbf{n}_{\pm}(0)| \mathbf{n}_{-}(0)
angle = 0$ $|\mathbf{n}_{\pm}(1)
angle = e^{i\gamma_{\pm}} |\mathbf{n}_{\pm}(0)
angle$ $\mathbf{n}_{\pm}(0) :$ 基本 Bloch ベクトル

$$|\boldsymbol{n}(0)\rangle = a_{+} |\boldsymbol{n}_{+}(0)\rangle + a_{-} |\boldsymbol{n}_{-}(0)\rangle$$
$$|\boldsymbol{n}(1)\rangle = a_{+}e^{i\gamma_{+}} |\boldsymbol{n}_{+}(0)\rangle + a_{-}e^{i\gamma_{-}} |\boldsymbol{n}_{-}(0)\rangle$$

時間発展演算子

$$U = e^{i\gamma_{+}} |\mathbf{n}_{+}(0)\rangle \langle \mathbf{n}_{+}(0)| + a_{-}e^{i\gamma_{-}} |\mathbf{n}_{-}(0)\rangle \langle \mathbf{n}_{-}(0)|$$

introduction	GQG & composite gates	dynamic phase & robustness	example	summary

動的位相とゲートの安定性

introduction GQG & composite gates

summary

θ の系統的なエラー

error in
$$\theta$$
 ($\varepsilon \ll 1$)

1 量子ビットゲート
$$R(\boldsymbol{m}, \theta(1+\varepsilon)) = R(\boldsymbol{m}, \theta) + O(\varepsilon)$$

複合量子ゲート

$$\prod_{j=1}^{N} R(\boldsymbol{m}_j, \theta_j(1+\varepsilon)) = R(\boldsymbol{m}, \theta) + \underline{O(\varepsilon)}$$

系統的なエラーに対して安定な 複合量子ゲート

$$\prod_{j=1}^{N} R(\boldsymbol{m}_j, \theta_j(1+\varepsilon)) = R(\boldsymbol{m}, \theta) + \underline{O(\varepsilon^2)}$$

 introduction
 GQG & composite gates ○○○○○
 dynamic phase & robustness ○○○
 example ○○○
 summary ○○○

 ○○
 ○○
 ○○
 ○○
 ○○

θ の系統的なエラー

error in
$$\theta$$
 ($\varepsilon \ll 1$)

1 量子ビットゲート
$$R(\boldsymbol{m}, \theta(1+\varepsilon)) = R(\boldsymbol{m}, \theta) + O(\varepsilon)$$
複合量子ゲート

$$\prod_{j=1}^{N} R(\boldsymbol{m}_j, \theta_j(1+\varepsilon)) = R(\boldsymbol{m}, \theta) + \underline{O(\varepsilon)}$$

系統的なエラーに対して安定な 複合量子ゲート

$$\prod_{j=1}^{N} R(\boldsymbol{m}_j, \theta_j(1+\varepsilon)) = R(\boldsymbol{m}, \theta) + \underline{O(\varepsilon^2)}$$

introduction GQG & composite gates dynamic phase & robustness example summary 000

θ の系統的なエラー

error in
$$\theta$$
 ($\varepsilon \ll 1$)

1量子ビットゲート
$$R(\boldsymbol{m}, \theta(1+\varepsilon)) = R(\boldsymbol{m}, \theta) + O(\varepsilon)$$

$$\prod_{j=1}^{N} R(\boldsymbol{m}_j, \theta_j(1+\varepsilon)) = R(\boldsymbol{m}, \theta) + \underline{O(\varepsilon)}$$

系統的なエラーに対して安定な 複合量子ゲート

$$\prod_{j=1}^{N} R(\boldsymbol{m}_j, \theta_j(1+\varepsilon)) = R(\boldsymbol{m}, \theta) + \underline{O(\varepsilon^2)}$$

introduction

GQG & composite gates

dynamic phase & robustness ○●○ example

summary

複合量子ゲートと動的位相

系統的なエラーのある複合量子ゲート

$$\prod_{j=1}^{N} R(\boldsymbol{m}_{j}, \theta_{j}(1+\varepsilon)) = R(\boldsymbol{m}, \theta) + \sum_{j=1}^{N} R_{N} \dots R_{j} \left(-i\varepsilon \theta_{j} \frac{\boldsymbol{m}_{j} \cdot \boldsymbol{\sigma}}{2}\right) \dots R_{1} + O(\varepsilon^{2})$$

$$= R(\boldsymbol{m}, \theta) - i\varepsilon \sum_{j=1}^{N} R_N \dots (R_j H_j T_j) \dots R_1 + O(\varepsilon^2)$$

$$R_j = R(\boldsymbol{m}_j, \theta_j) = \exp\left(-i\theta_j \frac{\boldsymbol{m}_j \cdot \boldsymbol{\sigma}}{2}\right)$$
$$H_j = H(\boldsymbol{m}_j, \theta_j) = \theta_j \frac{\boldsymbol{m}_j \cdot \boldsymbol{\sigma}}{2} \frac{1}{T_j}$$

introduction GQG & composite gates dynamic phase & robustness example summary ○○○○ ○○ ○○ ○○

複合量子ゲートと動的位相

期待値

$$-\langle \boldsymbol{n}_{0}|\sum_{j=1}^{N}R_{N}\dots R_{j}H_{j}T_{j}R_{j-1}\dots R_{1}|\boldsymbol{n}_{0}\rangle = -e^{-i\theta/2}\sum_{j=1}^{N}\langle \boldsymbol{n}_{j-1}|H_{j}T_{j}|\boldsymbol{n}_{j-1}\rangle$$
$$= -e^{-i\theta/2}\sum_{j=1}^{N}\gamma_{\mathrm{d},j}$$
$$\sum_{j=1}^{N}\gamma_{\mathrm{d},j} = 0 \implies \prod_{j=1}^{N}R(\boldsymbol{m}_{j},\theta_{j}(1+\varepsilon)) = \underline{R(\boldsymbol{m},\theta) + O(\varepsilon^{2})}$$

に対して安定

introduction GQG & composite gates dynamic phase & robustness example summary 00000 000

複合量子ゲートと動的位相

期待値

introduction GQG & composite gates dynamic phase & robustness example summary 00000 000

複合量子ゲートと動的位相

期待値

$$\begin{split} - \langle \boldsymbol{n}_{0} | \sum_{j=1}^{N} R_{N} \dots R_{j} H_{j} T_{j} R_{j-1} \dots R_{1} | \boldsymbol{n}_{0} \rangle &= -e^{-i\theta/2} \sum_{j=1}^{N} \langle \boldsymbol{n}_{j-1} | H_{j} T_{j} | \boldsymbol{n}_{j-1} \rangle \\ &= -e^{-i\theta/2} \sum_{j=1}^{N} \gamma_{\mathrm{d},j} \\ \sum_{j=1}^{N} \gamma_{\mathrm{d},j} &= 0 \implies \prod_{j=1}^{N} R(\boldsymbol{m}_{j}, \theta_{j}(1+\varepsilon)) = \underline{R(\boldsymbol{m}, \theta) + O(\varepsilon^{2})} \\ & \boxed{\mathbf{\mathbf{b}} \mathbf{b} \mathbf{b} \mathbf{d} \mathbf{h} \mathbf{b} \mathbf{0}} \iff \boxed{\begin{subarray}{c} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{c} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{c} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{c} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \end{bmatrix} \end{split}$$

introduction	GQG & composite gates	dynamic phase & robustness	example	summary

例

W1 sequence

2010-09-23 M. Bando & Y. Kondo (Kinki Univ.) 安定な複合量子操作と幾何学的および動的位相 (23aRF-3)

 $\boldsymbol{m}_i = (\cos \phi_i, \ \sin \phi_i, \ 0)$

introduction	GQG & composite gates	dynamic phase & robustness	example ○○●	summary
W1 sequ	ence			

 θ に 10%のエラーがあるときの、 90× ゲート及び W1 sequence による複合 90× ゲート。

introduction	GQG & composite gates	dynamic phase & robustness	example 000	summary
Summary				

- 動的位相が0になる複合量子ゲートは、制御変数の強さの系統的なエラーに対して安定である。
- 例として、W1 sequence を用いた安定な複合量子ゲートが構成できることを示した。

arXiv:1005.3917