quantum gates

classification

summarv

Robust Quantum Gates

Masamitsu Bando

Research Center for Quantum Computing Interdisciplinary Graduate School of Science and Engineering Kinki University, Higashi-Osaka, 577-8502, Japan

11th March 2011

Symposium at ORC(Kinki Univ.) 💥

quantum gates

classification

example

summary

坂東将光

近畿大学大学院 総合理工学研究科 中原研究室 D1

■ 近畿大学 理工学部

卒業論文「ホロノミック量子計算の提案:ダイマー鎖モデル」

■ 大阪大学大学院 理学研究科 博士前期過程

修士論文「フォノン散乱を考慮したゼーベック係数の第一原理計算手法の開発」

 introduction
 quantum gates
 classification
 example
 summary

 000000
 0000
 00000
 00000000
 00000000
 000000000

Introduction

Classical Computer

state: 0, 1 (discrete)

introduction	quantum gates	classification	example	summary
●00000	0000	00000	0000000	

Quantum Computer

state: $|0\rangle$, $|1\rangle$, $\alpha |0\rangle + \beta |1\rangle$ (continuous)

introduction	quantum gates	classification	example	summary
•00000	0000	00000	0000000	

Quantum Computer

state: $|0\rangle$, $|1\rangle$, $\alpha |0\rangle + \beta |1\rangle$ (continuous) susceptible to error

introduction	quantum gates	classification	example	summary
00000	0000	00000	0000000	

Quantum gate

simple one qubit gate

introduction	quantum gates	classification	example	summary
00000	0000	00000	0000000	

Quantum gate

$$R(\boldsymbol{m}, \theta) = \exp\left(-i\theta \frac{\boldsymbol{m} \cdot \boldsymbol{\sigma}}{2}\right)$$

heta: control field strength imes time $m{m}:$ unit vector $(m{m}\in\mathbb{R}^3)$, $m{\sigma}=(\sigma_x,\ \sigma_y,\ \sigma_z)$

e.g.

$$\theta = \pi/2, \ \boldsymbol{m} = (0, \ 1, \ 0)$$

rotate $\pi/2$ around y axis

$$R\left|0\right\rangle = \frac{1}{\sqrt{2}}\left(\left|0\right\rangle + \left|1\right\rangle\right)$$

introduction ○○○●○○	quantum gates	classification	example 00000000	summary

Error?

unwanted inputs

unwanted random inputs

 \implies noise

unwanted systematic inputs
 error

unwanted random inputs

 \implies noise

unwanted systematic inputs
 error

introduction	quantum gates	classification	example	summary
000000	0000	00000	0000000	

in NMR...

composite pulse

introduction 000000	quantum gates	classification 00000	example 00000000	summary
in NMR				

composite pulse

$$|\boldsymbol{n}_0
angle$$
 R_1 R_2 R_3 \cdots R_N $R_N \cdots R_2 R_1 |\boldsymbol{n}_0
angle$

introduction	quantum gates	classification	example	summary
00000	0000	00000	0000000	

Framework

How have composite quantum gates been designed up to now?

- from experience
- calculation by using quaternion

H. K. Cummins, et. al, Phys. Rev. A 67, 042308 (2003),
 W. G. Alway, J. A. Jones, J. Magn. Reson. 189 (2007) 114-120

- Not easy to understand physical meaning
- Complex calculation

New framework

- + <u>Clear</u> physical meaning
- + Simple calculation

introduction	quantum gates	classification	example	summary
00000	0000	00000	0000000	

Framework

How have composite quantum gates been designed up to now?

- from experience
- calculation by using quaternion

H. K. Cummins, et. al, Phys. Rev. A 67, 042308 (2003),
 W. G. Alway, J. A. Jones, J. Magn. Reson. 189 (2007) 114-120

- Not easy to understand physical meaning
- Complex calculation

- New framework
 - + <u>Clear</u> physical meaning
 - + Simple calculation

introduction	quantum gates	classification	example	summary
00000	0000	00000	0000000	

Framework

How have composite quantum gates been designed up to now?

- from experience
- calculation by using quaternion

H. K. Cummins, et. al, Phys. Rev. A 67, 042308 (2003),
 W. G. Alway, J. A. Jones, J. Magn. Reson. 189 (2007) 114-120

- Not easy to understand physical meaning
- Complex calculation

New framework

- + Clear physical meaning
- + Simple calculation

introductionquantum gatesclassificationexamplesummary00000000000000000000000000000000000

Time-evolution operator

composite pulse

$$|\boldsymbol{n}_0
angle$$
 R_1 R_2 R_3 \cdots R_N R_N \cdots R_2R_1 $|\boldsymbol{n}_0
angle$

$$R = \exp\left(-i\theta_N \frac{\boldsymbol{m}_N \cdot \boldsymbol{\sigma}}{2}\right) \exp\left(-i\theta_{N-1} \frac{\boldsymbol{m}_{N-1} \cdot \boldsymbol{\sigma}}{2}\right) \cdots$$
$$\bigcup_{\lambda(1,0) := \mathcal{T} \exp\left(-i\int_0^1 dt H(\lambda(t))\right)}$$

 introduction
 quantum gates
 classification
 example
 summary

 000000
 0●00
 00000
 00000000
 00000000

Time-evolution operator

$$U_{\lambda}(1,0) \in SU(n)$$

$$U_{\lambda}(1,0) := \mathcal{T} \exp\left(-i \int_{0}^{1} dt H(\lambda(t))\right)$$

quantum gates ○●○○ classification

example

summary

Time-evolution operator

1

$$U_{\lambda}(1,0) \in SU(n)$$

$$U_{\lambda}(1,0) := \mathcal{T} \exp\left(-i \int_{0}^{1} dt H(\lambda(t))\right)$$

e.g.

$$n = 2 , \quad \lambda = (heta, 0, 0)$$
 $U_{\lambda}(1, 0) = \exp\left(-i heta \frac{\sigma_x}{2}
ight) = R(oldsymbol{x}, heta)$

Hamiltonian
$$H(\lambda(t)) := \lambda_{\mu}(t)\tau_{\mu}$$

quantum gates

classification

example

summary

Definition of "robust quantum gate"

time-evolution operator with error

$$U_{\lambda+\delta\lambda}(1,0) = U_{\lambda}(1,0) \left(1 + \underline{\mathcal{O}}(|\delta\lambda|)\right)$$

if the first order term of error vanishes

 \implies robust against error

$$U_{\lambda+\delta\lambda}(1,0) = U_{\lambda}(1,0) \left(1 + \underline{\mathcal{O}}(|\delta\lambda|^2)\right)$$

 $\delta\lambda(t)$: error $(|\delta\lambda(t)| \ll |\lambda(t)|)$

quantum gates

classification

example

summary

Definition of "robust quantum gate"

time-evolution operator with error

$$U_{\lambda+\delta\lambda}(1,0) = U_{\lambda}(1,0) \left(1 + \underline{\mathcal{O}}(|\delta\lambda|)\right)$$

if the first order term of error vanishes

$$\implies \qquad \text{robust against error} \\ U_{\lambda+\delta\lambda}(1,0) = U_{\lambda}(1,0) \left(1 + \underline{\mathcal{O}}(|\delta\lambda|^2)\right)$$

$$\delta\lambda(t):\,{\rm error}\quad (\ |\delta\lambda(t)|\ll |\lambda(t)|\)$$

 introduction
 quantum gates
 classification
 example
 summary

 000000
 000●
 00000
 00000000
 000000000

time-evolution with error

time-evolution operator (with error)

$$U_{\lambda+\delta\lambda}(1,0) = U_{\lambda}(1,0) - iU_{\lambda}(1,0) \int_{0}^{1} dt \, H_{I}(\delta\lambda(t)) + \mathcal{O}(|\delta\lambda|^{2})$$

 $H_I(\delta\lambda(t))$: error term of Hamiltonian at interaction picture

robustness condition

$$\int_0^1 dt \, H_I(\delta\lambda(t)) = 0$$

 introduction
 quantum gates
 classification
 example
 summary

 000000
 000●
 00000
 00000000
 000000000

time-evolution with error

time-evolution operator (with error)

$$U_{\lambda+\delta\lambda}(1,0) = U_{\lambda}(1,0) - iU_{\lambda}(1,0) \int_{0}^{1} dt \, H_{I}(\delta\lambda(t)) + \mathcal{O}(|\delta\lambda|^{2})$$

 $H_I(\delta\lambda(t))$: error term of Hamiltonian at interaction picture

robustness condition

$$\int_0^1 dt \, H_I(\delta\lambda(t)) = 0$$

classification of errors

introduction 000000	quantum gates	classification ●0000	example 00000000	summary

systematic error:
$$\delta \lambda_{\mu}(t) = F_{\mu}(\lambda(t)) = f_{\mu} + f_{\mu\nu}\lambda_{\nu}(t) + \dots$$

$$\int_{0}^{1} dt \, H_{I}(\delta\lambda(t)) = 0$$

$$f_{\mu} \int_{0}^{1} dt \tilde{\tau}_{\mu}(t) + f_{\mu\nu} \int_{0}^{1} dt \tilde{\tau}_{\mu}(t) \lambda_{\nu}(t) + \ldots = 0$$

$$H_{I}(\delta\lambda(t)) = \delta\lambda_{\mu}(t)\tilde{\tau}_{\mu}(t)$$

$$\tilde{\tau}_{\mu}(t) = U_{\lambda}(t)^{\dagger} \tau_{\mu} U_{\lambda}(t) , \qquad H(\delta\lambda(t)) = \delta\lambda_{\mu} \tau_{\mu}$$

summary

$$f_{\mu} \int_0^1 dt \, \tilde{\tau}_{\mu}(t) = 0$$

$$f_{\mu\nu} \int_0^1 dt \, \tilde{\tau}_\mu(t) \lambda_\nu(t) = 0$$

expectation value: $\left< \varphi \right| \tilde{\tau}_{\mu}(t) \left| \varphi \right> = \left< \varphi(t) \right| \tau_{\mu} \left| \varphi(t) \right> = \varphi_{\mu}(t)$

introduction 000000	quantum gates	classification ○○●○○	example 00000000	summary

$$f_{\mu} \int_{0}^{1} dt \, \tilde{\tau}_{\mu}(t) = 0 \qquad \qquad f_{\mu\nu} \int_{0}^{1} dt \, \tilde{\tau}_{\mu}(t) \lambda_{\nu}(t) = 0$$

$$f_{\mu\nu} = \frac{1}{N} \delta_{\mu\nu} f_{\rho\rho} + \frac{1}{2} (f_{\mu\nu} - f_{\nu\mu}) + \left[\frac{1}{2} (f_{\mu\nu} + f_{\nu\mu}) - \frac{1}{N} \delta_{\mu\nu} f_{\rho\rho} \right]$$

quantum gates

classification ○○○●○ example

summary

$$f_{\mu} \int_0^1 dt \, \tilde{\tau}_{\mu}(t) = 0$$

$$f_{\mu\nu} \int_0^1 dt \, \tilde{\tau}_\mu(t) \lambda_\nu(t) = 0$$

$$f_{\mu\nu} = \frac{1}{N} \delta_{\mu\nu} f_{\rho\rho} + \frac{1}{2} (f_{\mu\nu} - f_{\nu\mu}) + \left[\frac{1}{2} (f_{\mu\nu} + f_{\nu\mu}) - \frac{1}{N} \delta_{\mu\nu} f_{\rho\rho} \right]$$

quantum gates

classification ○○○●○ example

summary

$$f_{\mu} \int_0^1 dt \, \tilde{\tau}_{\mu}(t) = 0$$

$$f_{\mu\nu}\int_0^1 dt\,\tilde{\tau}_\mu(t)\lambda_\nu(t)=0$$

$$f_{\mu\nu} = \frac{1}{N} \delta_{\mu\nu} f_{\rho\rho} + \frac{1}{2} (f_{\mu\nu} - f_{\nu\mu}) + \left[\frac{1}{2} (f_{\mu\nu} + f_{\nu\mu}) - \frac{1}{N} \delta_{\mu\nu} f_{\rho\rho} \right]$$

quantum gates

classification ○○○●○ example

summary

$$f_{\mu} \int_0^1 dt \, \tilde{\tau}_{\mu}(t) = 0$$

$$f_{\mu\nu}\int_0^1 dt\,\tilde{\tau}_\mu(t)\lambda_\nu(t)=0$$

$$f_{\mu\nu} = \frac{1}{N} \delta_{\mu\nu} f_{\rho\rho} + \frac{1}{2} (f_{\mu\nu} - f_{\nu\mu}) + \left[\frac{1}{2} (f_{\mu\nu} + f_{\nu\mu}) - \frac{1}{N} \delta_{\mu\nu} f_{\rho\rho} \right]$$

$$\int_{0}^{1} dt \left[\frac{\tilde{\tau}_{\mu} \lambda_{\nu} + \tilde{\tau}_{\nu} \lambda_{\mu}}{2} - \frac{\delta_{\mu\nu} \tilde{\tau}_{\rho} \lambda_{\rho}}{N} \right] = 0$$

$$\implies \text{ torsion of } \lambda(t)$$

$$\mathbb{R}^{n^{2}-1}: \text{ control parameter } \lambda(t)$$

space

intro	du	cti	on
000		00	

quantum gates

classification ○○○○● example

summary

$$f_{\mu} \int_0^1 dt \, \tilde{\tau}_{\mu}(t) = 0$$

$$\int_0^1 dt \, \varphi(t) = 0 \quad \Longrightarrow \text{ constant error}$$

$$f_{\mu\nu} \int_0^1 dt \, \tilde{\tau}_\mu(t) \lambda_\nu(t) = 0$$

$$\int_0^1 dt \, ilde{ au}_\mu \lambda_\mu = 0 \implies ext{ norm of } \lambda(t)$$

$$\frac{\int_{0}^{1} dt \left(\tilde{\tau}_{\mu}\lambda_{\nu} - \tilde{\tau}_{\nu}\lambda_{\mu}\right) = 0}{\int_{0}^{1} dt \left[\frac{1}{2}(\tilde{\tau}_{\mu}\lambda_{\nu} + \tilde{\tau}_{\nu}\lambda_{\mu}) - \frac{1}{N}\delta_{\mu\nu}\tilde{\tau}_{\rho}\lambda_{\rho}\right]} = 0 \implies \text{torsion of } \lambda(t)$$

example

introduction	quantum gates	classification	example	summary
000000	0000	00000	0000000	

Discretization

discretization

$$U_{\lambda+\delta\lambda}(1,0) = U_{\lambda^N+\delta\lambda^N}(1,t_{N-1})\dots U_{\lambda^1+\delta\lambda^1}(t_1,0)$$

$$U_{\lambda^j}(t_j, t_{j-1}) = R(\boldsymbol{m}_j, \theta_j) = \exp\left(-i\frac{\theta_j}{2}\,\boldsymbol{m}_j\cdot\boldsymbol{\sigma}\right)$$

pulse strength error

$$U_{\lambda+\delta\lambda}(t_j, t_{j-1}) = \exp\left(-i\theta_j(1+\varepsilon)\frac{\boldsymbol{m}_j \cdot \boldsymbol{\sigma}}{2}\right)$$

error in θ (rotating angle)

introduction	quantum gates	classification	example	summary
000000	0000	00000	0000000	

Robustness condition

robustness condition

$$\int_{0}^{1} dt H_{I}(\lambda(t)) = 0 \implies \int_{0}^{1} dt U_{\lambda}(t_{j}, 0)^{\dagger} H(\lambda(t)) U_{\lambda}(t_{j}, 0) = 0$$

robustness condition for error in $\boldsymbol{\theta}$

$$\sum_{j=1}^{N} U_{\lambda^{N}} \dots U_{\lambda^{j+1}} (H_j T_j) U_{\lambda^{j}} \dots U_{\lambda^{1}} = 0$$

$$H_j = \frac{\theta_j}{2} \boldsymbol{m}_j \cdot \boldsymbol{\sigma} \frac{1}{T_j} , \qquad (T_j = t_j - t_{j-1})$$

$$|\mathbf{n}(1)\rangle = a_{+}e^{i\gamma_{+}}|\mathbf{n}_{+}(0)\rangle + a_{-}e^{i\gamma_{-}}|\mathbf{n}_{-}(0)\rangle$$

quantum gate(time-evolution operator)

$$U = a_{+}e^{i\gamma_{+}} |\boldsymbol{n}_{+}(0)\rangle \langle \boldsymbol{n}_{+}(0)| + a_{-}e^{i\gamma_{-}} |\boldsymbol{n}_{-}(0)\rangle \langle \boldsymbol{n}_{-}(0)|$$

quantum gates

classification

example

summary

phase and robustness condition

expectation value for cyclic states...

2011-03-11 M. Bando(Kinki Univ.)

quantum gates

classification

example

summary

phase and robustness condition

expectation value for cyclic states...

introduction	quantum gates	classification	example	summary
000000	0000	00000	00000000	

W1 sequence

$$U_{W1} = R(m_1, \pi)R(m_2, 2\pi)R(m_1, \pi) = I$$

 $R(\boldsymbol{x},\pi/2)$

 $R(\boldsymbol{x},\pi/4)\,\boldsymbol{U_{\mathrm{W1}}}\,R(\boldsymbol{x},\pi/4)$

$$\phi_1 = \pm \arccos\left(-\theta/(4\pi)\right)$$
, $\phi_2 = 3\phi_1$
 $\boldsymbol{m}_i = (\cos\phi_i, \sin\phi_i, 0)$

introduction	quantum gates	classification	example	summary
000000	0000	00000	00000000	

W1 sequence

$$U_{\rm W1} = e^{i\gamma_{\rm W1}} |\boldsymbol{x}\rangle \langle \boldsymbol{x}| + e^{-i\gamma_{\rm W1}} |-\boldsymbol{x}\rangle \langle -\boldsymbol{x}|$$

$$\gamma_{W1} = \gamma_{g,W1} + \gamma_{d,W1} = 0$$
, $\gamma_{d,W1} = -\gamma_{g,W1} = \frac{\theta/2}{2}$

$$\gamma_{\rm d} = -\theta/2$$

Geometric Phase Gate

$$R(\boldsymbol{x}, \theta/2) \frac{U_{W1}}{W_1} R(\boldsymbol{x}, \theta/2)$$

$$\gamma_{\rm d} = -\theta/2 + \underline{\theta/2} = 0$$

introduction	quantum gates	classification	example	summary
000000	0000	00000	0000000	

W1 sequence

simple 90x gate composite 90x gate

simple 90x gate and composite 90x gate with 10% error in θ

magnitude of displacement

$$\begin{split} 1 &- \frac{1}{2} \sum_{j=0,1} \boldsymbol{n}_{\lambda+\delta\lambda}^{j} \cdot \boldsymbol{n}_{\lambda}^{j} = \begin{cases} &\sim 10^{-2} \quad \text{(simple)} \\ &\sim 10^{-6} \quad \text{(composite)} \end{cases} \\ \boldsymbol{n}_{\lambda}^{j} &= \langle j | \, U_{\lambda}^{\dagger} \boldsymbol{\sigma} U_{\lambda} \, | j \rangle \ , \quad \boldsymbol{n}_{\lambda+\delta\lambda}^{j} = \langle j | \, U_{\lambda+\delta\lambda}^{\dagger} \boldsymbol{\sigma} U_{\lambda+\delta\lambda} \, | j \rangle \end{split}$$

quantum gates

classification

example

summary

Summary

- conditions for robust quantum gate
- physical meaning
- phases and robustness

References

• Y. Kondo and M. Bando, accepted for publication in J. Phys. Soc. Jpn., arXiv:1005.3917.